Hi!
I am Kai Riedmiller. By training, I am a theoretical chemist with a focus on machine learning and data science.
Education
PhD engineering sciences, University Heidelberg
Title: Predicting Hydrogen Atom Transfer in Collagen
I worked on creating a machine learned model for predicting chemical reactivity based on the 3D structure of a molecular system.
Master of Science, Chemistry, University Konstanz
Title: Machine learning methods for characterization of mineralization processes
Classification of small molecular clusters forming crystallization seeds using autoencoders.
I work as a PostDoc at the Heidelberg Institute for Theoretical Studies, HITS, in Heidelberg in the Molecular Biomechanics Group of Prof. Frauke Gräter.
Tools
Tools I learned during my studies, or by myself:
- Python, for
- Workflow automation
- Machine learning
- Data visualization
- Data analysis
- Publishing software
- Tensorflow/Pytorch
- Gromacs
- Molecular Dynamics engine
- docker
- git, github, github actions
- Blender
- 3D Visualizations
- for molecules and data just as much as for more artistic projects
- Inkscape
- LaTeX
- Linux, bash
My Publications
- Crash Testing Machine Learning Force Fields for Molecules, Materials, and Interfaces:
- Molecular Dynamics in the TEA Challenge 2023
- Model Analysis in the TEA Challenge 2023
- Poltavsky, I.; Puleva, M.; Charkin-Gorbulin, A.; Fonseca, G. C.; Batatia, I.; Browning, N. J.; Müller, C.; Riedmiller, K.; Rupp, M.; Csanyi, G.; von Lilienfeld, O. A.; Müller, K.R.; Tkatchenko, A.; et al., preprint 2024
- Part 1: MD
- Part 2: Models
Link to original
- Predicting Hydrogen Atom Transfer in Collagen
- Riedmiller, K; Dissertation, 2024
- https://doi.org/10.11588/heidok.00035153
- Substituting density functional theory in reaction barrier calculations for hydrogen atom transfer in proteins
- Riedmiller, K.; Reiser, P.; Bobkova, E.; Maltsev, K.; Gryn’ova, G.; Friederich, P.; Gräter, F. Chem. Sci. 2024.
- Chemical Science
- Scalable stellar evolution forecasting
- Maltsev, K.; Schneider, F. R. N.; Röpke, F. K.; Jordan, A. I.; Qadir, G. A.; Kerzendorf, W. E.; Riedmiller, K.; Smagt, P. van der. A&A 2024, 681, A86.
- Astronomy & Astrophysics
- Collagen breaks at weak sacrificial bonds taming its mechanoradicals
- Rennekamp, B.; Karfusehr, C.; Kurth, M.; Ünal, A.; Monego, D.; Riedmiller, K.; Gryn’ova, G.; Hudson, D. M.; Gräter, F. Nat Commun 2023, 14 (1), 2075.
- Nature Communications
- DOPA Residues Endow Collagen with Radical Scavenging Capacity
- Kurth, M.; Barayeu, U.; Gharibi, H.; Kuzhelev, A.; Riedmiller, K.; Zilke, J.; Noack, K.; Denysenkov, V.; Kappl, R.; Prisner, T. F.; Zubarev, R. A.; Dick, T. P.; Gräter, F. Angewandte Chemie International Edition 2023, 62 (24), e202216610.
- Angewandte Chemie International Edition
- Bond dissociation energies of X–H bonds in proteins
- Treyde, W.; Riedmiller, K.; Gräter, F. RSC Advances 2022, 12 (53), 34557–34564.
- RSC Advances
- Guanidine-II aptamer conformations and ligand binding modes through the lens of molecular simulation
- Steuer, J.; Kukharenko, O.; Riedmiller, K.; Hartig, J. S.; Peter, C. Nucleic Acids Research 2021, 49 (14), 7954–7965.
- Nucleic Acids Research
- Remote Perfluoroalkyl Substituents are Key to Living Aqueous Ethylene Polymerization
- Schnitte, M.; Scholliers, J. S.; Riedmiller, K.; Mecking, S. Angewandte Chemie International Edition 2020, 59 (8), 3258–3263.
- Angewandte Chemie International Edition